CollegeBoard AP

Student's					
Teacher's	Name _	Mr.	Huebr	ner	
School	HOW	Æll	High	Schoo	

AP® Physics C Exam

2005

SECTION II

TABLE OF INFORMATION FOR 2005

CONSTANTS AND CO	UN	ITS	300	PREFI	XES		
		Name	Symbol	Factor	<u>Prefix</u>	Syml	pol
1 unified atomic mass unit,	$1 \text{ u} = 1.66 \times 10^{-27} \text{ kg}$	meter	m	10°	giga	G	
	= $931 \text{ MeV/}c^{-1}$	kilogram	kg	106	mega	M	
Proton mass.	$m_p = 1.67 \times 10^{-27} \text{ kg}$	second	s	10 ³	kilo	k	
Neutron mass.	$m_{\pi} = 1.67 \times 10^{-27} \text{ kg}$			10 ⁻²	centi	c	
Electron mass.	$m_e = 9.11 \times 10^{-31} \text{ kg}$	ampere	A				
Magnitude of the electron charge.	$e = 1.60 \times 10^{-19} \mathrm{C}$	kelvin	K	10-3	milli	111	
Avogadro's number,	$N_0 = 6.02 \times 10^{23} \mathrm{mol}^{-1}$	mole	mol	10-6	micro	μ	
Universal gas constant,	$R = 8.31 \text{ J/} (\text{mol} \cdot \text{K})$	hertz	Hz	10-9	nano	n	
Boltzmann's constant,	$k_B = 1.38 \times 10^{-23} \text{J/K}$	newton	N	10^{-12}	pico	p	
Speed of light,	$c = 3.00 \times 10^8 \text{ m/s}$ $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}$	pascal	Pa	VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANG		TRICONOMETRIC	
Planck's constant,	$h = 6.63 \times 10^{-15} \mathrm{eV \cdot s}$ = $4.14 \times 10^{-15} \mathrm{eV \cdot s}$		J			ANGLES	
		joule	. 656	θ	sin θ	cos θ	tan θ
	$hc = 1.99 \times 10^{-25} \text{J} \cdot \text{m}$	watt	W	_			0
	$= 1.24 \times 10^3 \text{eV} \cdot \text{nm}$	coulomb	С	0°	0	1	0
Vacuum permittivity,	$\epsilon_0 = 8.85 \times 10^{-12} \mathrm{C}^2 /\mathrm{N} \cdot \mathrm{m}^2$	volt	V	30°	1/2	$\sqrt{3}/2$	$\sqrt{3}/3$
Coulomb's law constant,	$k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \mathrm{N}\cdot\mathrm{m}^2/\mathrm{C}^2$	ohm	Ω		1/2		
Vacuum permeability,	$\mu_0 = 4\pi \times 10^{-7} (\mathrm{T \cdot m}) / \mathrm{A}$	henry	Н	37°	3/5	4/5	3/4
Magnetic constant,	$k' = \mu_0 / 4\pi = 10^{-7} (\text{T \cdot m}) / \text{A}$	farad	F		√2/2	√2/2	1
Universal gravitational constant,	$G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$	tesla	Т	45°	V 212	V 2/2	1
Acceleration due to gravity		degree Celsius	°C	53°	4/5	3/5	4/3
at the Earth's surface,	$g = 9.8 \text{ m/s}^2$	electron-	-				-
1 atmosphere pressure,	*1	volt	eV	60°	$\sqrt{3}/2$	1/2	√3
	$= 1.0 \times 10^5 \text{Pa}$			000	1	0	-
1 electron volt,	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$			90°	1	0	55

The following conventions are used in this exam.

- I. Unless otherwise stated, the frame of reference of any problem is assumed to be inertial.
- II. The direction of any electric current is the direction of flow of positive charge (conventional current).
- III. For any isolated electric charge, the electric potential is defined as zero at an infinite distance from the charge.

This green insert is intended for use by AP teachers for course and exam preparation in the classroom. Teachers may reproduce it, in whole or in part, for limited use with their students, but may not mass distribute it, electronically or otherwise. This green insert and any copies made of it may not be resold, and the copyright notices must be retained as they appear here. This permission does not apply to any third-party copyrights

FORM 4BBP

MECHANICS

 x_0

	A
	N
	$v = v_0 + at$
	$x = x_0 + v_0 t + \frac{1}{2} a t^2$
	$v^2 = {v_0}^2 + 2a(x - x_0)$
	$\sum \mathbf{F} = \mathbf{F}_{net} = m\mathbf{a}$
	$\mathbf{F} = \frac{d\mathbf{p}}{dt}$
	$\mathbf{J} = \int \mathbf{F} dt = \Delta \mathbf{p}$
	$\mathbf{p} = m\mathbf{v}$
	$F_{fric} \le \mu N$
	$W = \int \mathbf{F} \cdot d\mathbf{r}$
	$K = \frac{1}{2}mv^2$
	$P = \frac{dW}{dt}$
-	$P = \mathbf{F} \cdot \mathbf{v}$
-	$\Delta U_g = mgh$
	$a_c = \frac{v^2}{r} = \omega^2 r$
	$\tau = \mathbf{r} \times \mathbf{F}$
	$\sum \mathbf{\tau} = \mathbf{\tau}_{net} = I\mathbf{\alpha}$
-	$I = \int r^2 dm = \sum mr^2$
	$\mathbf{r}_{cm} = \sum m\mathbf{r}/\sum m$
	$v = r\omega$
-	$\mathbf{L} = \mathbf{r} \times \mathbf{p} = I\mathbf{\omega}$
	$K = \frac{1}{2}I\omega^2$
	$\omega = \omega_0 + \alpha t$
	$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$
	$\mathbf{F}_{s} = -k\mathbf{x}$
	$U_s = \frac{1}{2}kx^2$
	$T = \frac{2\pi}{\omega} = \frac{1}{f}$
	$T_s = 2\pi \sqrt{\frac{m}{k}}$
	$T_p = 2\pi \sqrt{\frac{\ell}{g}}$
The same of the same of	$\mathbf{F}_G = -\frac{Gm_1m_2}{r^2}\hat{\mathbf{r}}$
Street, Street	Gm ₁ m ₂

a = accelerationF = forcef = frequencyh = height

I = rotational inertiaJ = impulseK = kinetic energyk = spring constant $\ell = length$

L = angular momentum

m = massN = normal forceP = powerp = momentumr = radius or distancer = position vectorT = periodt = time

U = potential energyv = velocity or speedW =work done on a system

x = position μ = coefficient of friction

 θ = angle τ = torque

 ω = angular speed

 α = angular acceleration

Y AND MAGNETISM

A = area

	ELECTRICITY
	$F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$
	$\mathbf{E} = \frac{\mathbf{F}}{q}$
	$\oint \mathbf{E} \cdot d\mathbf{A} = \frac{Q}{C}$
	dV
-	$E = -\frac{dV}{dr}$
	$V = \frac{1}{4\pi\epsilon_0} \sum_{i} \frac{q_i}{r_i}$
AND DESCRIPTION OF THE PERSON NAMED IN COLUMN STREET, THE PERSON NAMED IN COLUMN STREE	$U_E = qV = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r}$
CONTRACTOR AND ADDRESS OF THE PROPERTY OF THE PERSON NAMED IN CONTRACTOR O	$C = \frac{Q}{V}$
	$C = \frac{\kappa \epsilon_0 A}{d}$
	$C_p = \sum_i C_i$
	$\frac{1}{C_s} = \sum_{i} \frac{1}{C_i}$
	$I = \frac{dQ}{dt}$
	$U_c = \frac{1}{2}QV = \frac{1}{2}CV^2$

 $\mathbf{F}_{M} = q\mathbf{v} \times \mathbf{B}$ $\oint \mathbf{B} \cdot d\boldsymbol{\ell} = \mu_0 I$

1 _ _2

B = magnetic fieldC = capacitanced = distanceE = electric field $\varepsilon = \text{emf}$ F = forceI = currentL = inductance $\ell = length$ n = number of loops of wireper unit length P = powerQ = chargeq = point chargeR = resistancer = distancet = timeU =potential or stored energy V = electric potential v = velocity or speed ρ = resistivity $\phi_m = \text{magnetic flux}$ κ = dielectric constant

GEOMETRY AND TRIGONOMETRY

Rectangle

A = area

A = bh

C = circumference

Triangle

V = volume

S = surface area

 $A = \frac{1}{2}bh$

b = base

h = height

 $A = \pi r^2$ $C = 2\pi r$

 $\ell = length$ w = width

Parallelepiped

r = radius

 $V = \ell w h$

Cylinder

$$V = \pi r^2 \ell$$

$$S = 2\pi r\ell + 2\pi r^2$$

Sphere

$$V = \frac{4}{3} \pi r^3$$

$$S = 4\pi r^2$$

Right Triangle

$$a^2 + b^2 = c^2$$

$$\sin\theta = \frac{a}{c}$$

$$\cos\theta = \frac{b}{c}$$

$$\tan\theta = \frac{a}{b}$$

CALCULUS

$$\frac{df}{dx} = \frac{df}{du}\frac{du}{dx} = \frac{du}{dx}$$

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(e^x) = e^x$$

$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \, n \neq -1$$

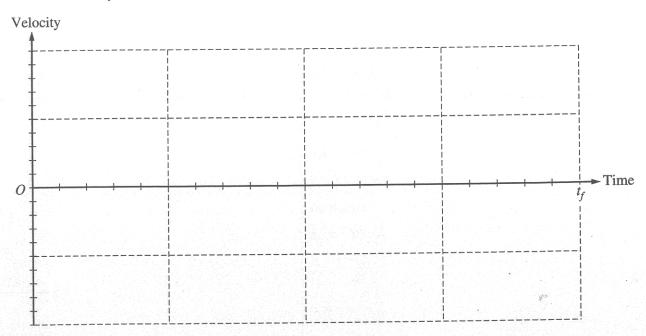
$$\int e^x dx = e^x$$

$$\int \frac{dx}{x} = \ln|x|$$

$$\int \cos x \, dx = \sin x$$

$$\int \sin x \, dx = -\cos x$$

M M M M M M M M M M M

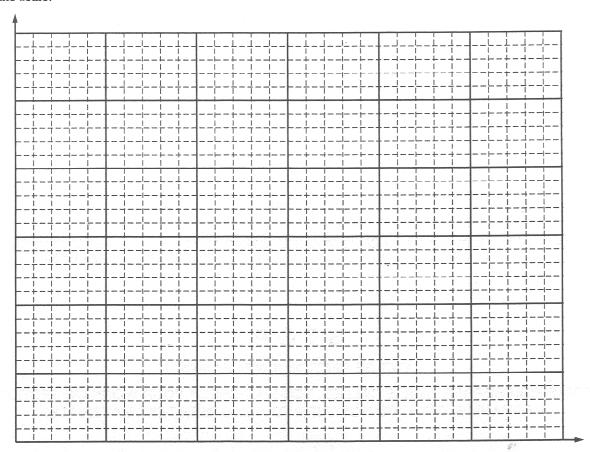

PHYSICS C Section II, MECHANICS Time—45 minutes 3 Questions

Directions: Answer all three questions. The suggested time is about 15 minutes for answering each of the questions, which are worth 15 points each. The parts within a question may not have equal weight. Show all your work in the pink booklet in the spaces provided after each part, NOT in this green insert.

A ball of mass M is thrown vertically upward with an initial speed of v_0 . It experiences a force of air resistance given by $\mathbf{F} = -k\mathbf{v}$, where k is a positive constant. The positive direction for all vector quantities is upward. Express all algebraic answers in terms of M, k, v_0 , and fundamental constants.

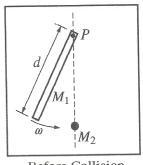
(a)	Does the magnitude of the acceleration of the ball increase, decrease, or remain the same as the ball moves upward?
	increases decreases remains the same
	Justify your answer.
(b)	Write, but do NOT solve, a differential equation for the instantaneous speed υ of the ball in terms of time as the ball moves upward.
(c)	Determine the terminal speed of the ball as it moves downward.
(d)	Does it take longer for the ball to rise to its maximum height or to fall from its maximum height back to the height from which it was thrown?
	longer to riselonger to fall
	Justify your answer.
	c a land described by the holl's

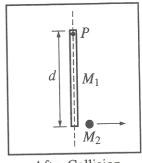
(e) On the axes below, sketch a graph of velocity versus time for the upward and downward parts of the ball's flight, where t_f is the time at which the ball returns to the height from which it was thrown.


M M M M M M M M M M M

Mech. 2.

A student is given the set of orbital data for some of the moons of Saturn shown below and is asked to use the data to determine the mass M_S of Saturn. Assume the orbits of these moons are circular.

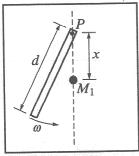

Orbital Period, T (seconds)	Orbital Radius, R (meters)	
8.14×10^4	1.85×10^{8}	
1.18×10^{5}	2.38×10^{8}	
1.63×10^{5}	2.95×10^{8}	
2.37×10^{5}	3.77×10^{8}	


- (a) Write an algebraic expression for the gravitational force between Saturn and one of its moons.
- (b) Use your expression from part (a) and the assumption of circular orbits to derive an equation for the orbital period T of a moon as a function of its orbital radius R.
- (c) Which quantities should be graphed to yield a straight line whose slope could be used to determine Saturn's mass?
- (d) Complete the data table by calculating the two quantities to be graphed. Label the top of each column, including units.
- (e) Plot the graph on the axes below. Label the axes with the variables used and appropriate numbers to indicate the scale.

(f) Using the graph, calculate a value for the mass of Saturn.

M M M M M M M M M M M

Before Collision


After Collision

TOP VIEWS

Mech. 3.

A system consists of a ball of mass M_2 and a uniform rod of mass M_1 and length d. The rod is attached to a horizontal frictionless table by a pivot at point P and initially rotates at an angular speed ω , as shown above left. The rotational inertia of the rod about point P is $\frac{1}{3}M_1d^2$. The rod strikes the ball, which is initially at rest. As a result of this collision, the rod is stopped and the ball moves in the direction shown above right. Express all answers in terms of M_1 , M_2 , ω , d, and fundamental constants.

- (a) Derive an expression for the angular momentum of the rod about point P before the collision.
- (b) Derive an expression for the speed v of the ball after the collision.
- (c) Assuming that this collision is elastic, calculate the numerical value of the ratio M_1/M_2 .

Before Collision

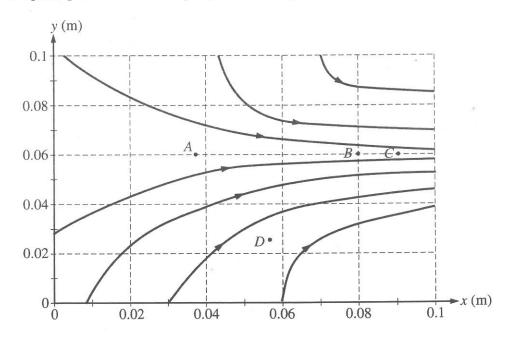
(d) A new ball with the same mass M_1 as the rod is now placed a distance x from the pivot, as shown above. Again assuming the collision is elastic, for what value of x will the rod stop moving after hitting the ball?

STOP

END OF SECTION II, MECHANICS

IF YOU FINISH BEFORE TIME IS CALLED, YOU MAY CHECK YOUR WORK ON SECTION II, MECHANICS, ONLY. DO NOT TURN TO ANY OTHER TEST MATERIALS.

NO TEST MATERIAL ON THIS PAGE

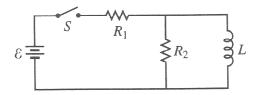

EEEEEEEEEEEEEEE

PHYSICS C

Section II, ELECTRICITY AND MAGNETISM Time—45 minutes

3 Questions

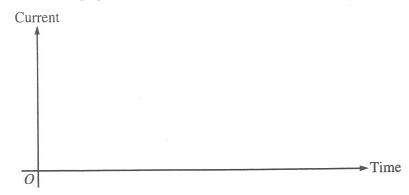
Directions: Answer all three questions. The suggested time is about 15 minutes for answering each of the questions, which are worth 15 points each. The parts within a question may not have equal weight. Show all your work in the pink booklet in the spaces provided after each part, NOT in this green insert.



E&M. 1.

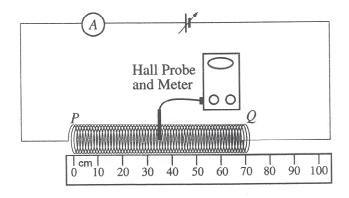
Consider the electric field diagram above.

- (a) Points A, B, and C are all located at y = 0.06 m.
 - i. At which of these three points is the magnitude of the electric field the greatest? Justify your answer.
 - ii. At which of these three points is the electric potential the greatest? Justify your answer.
- (b) An electron is released from rest at point B.
 - i. Qualitatively describe the electron's motion in terms of direction, speed, and acceleration.
 - ii. Calculate the electron's speed after it has moved through a potential difference of 10 V.
- (c) Points B and C are separated by a potential difference of 20 V. Estimate the magnitude of the electric field midway between them and state any assumptions that you make.
- (d) On the diagram, draw an equipotential line that passes through point D and intersects at least three electric field lines.


EEEEEEEEEEEEEEE

E&M. 2.

In the circuit shown above, resistors 1 and 2 of resistance R_1 and R_2 , respectively, and an inductor of inductance L are connected to a battery of emf \mathcal{E} and a switch S. The switch is closed at time t=0. Express all algebraic answers in terms of the given quantities and fundamental constants.


- (a) Determine the current through resistor 1 immediately after the switch is closed.
- (b) Determine the magnitude of the initial rate of change of current, dI/dt, in the inductor.
- (c) Determine the current through the battery a long time after the switch has been closed.
- (d) On the axes below, sketch a graph of the current through the battery as a function of time.

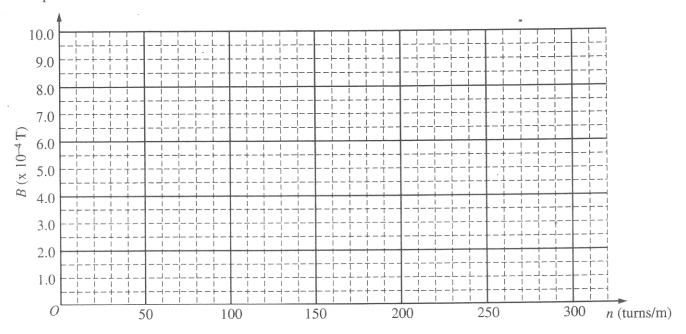
Some time after steady state has been reached, the switch is opened.

(e) Determine the voltage across resistor 2 just after the switch has been opened.

EEEEEEEEEEEEEE

E&M. 3.

A student performs an experiment to measure the magnetic field along the axis of the long, 100-turn solenoid PQ shown above. She connects ends P and Q of the solenoid to a variable power supply and an ammeter as shown. End P of the solenoid is taped at the 0 cm mark of a meterstick. The solenoid can be stretched so that the position of end Q can be varied. The student then positions a Hall probe* in the center of the solenoid to measure the magnetic field along its axis. She measures the field for a fixed current of 3.0 A and various positions of the end Q. The data she obtains are shown below.

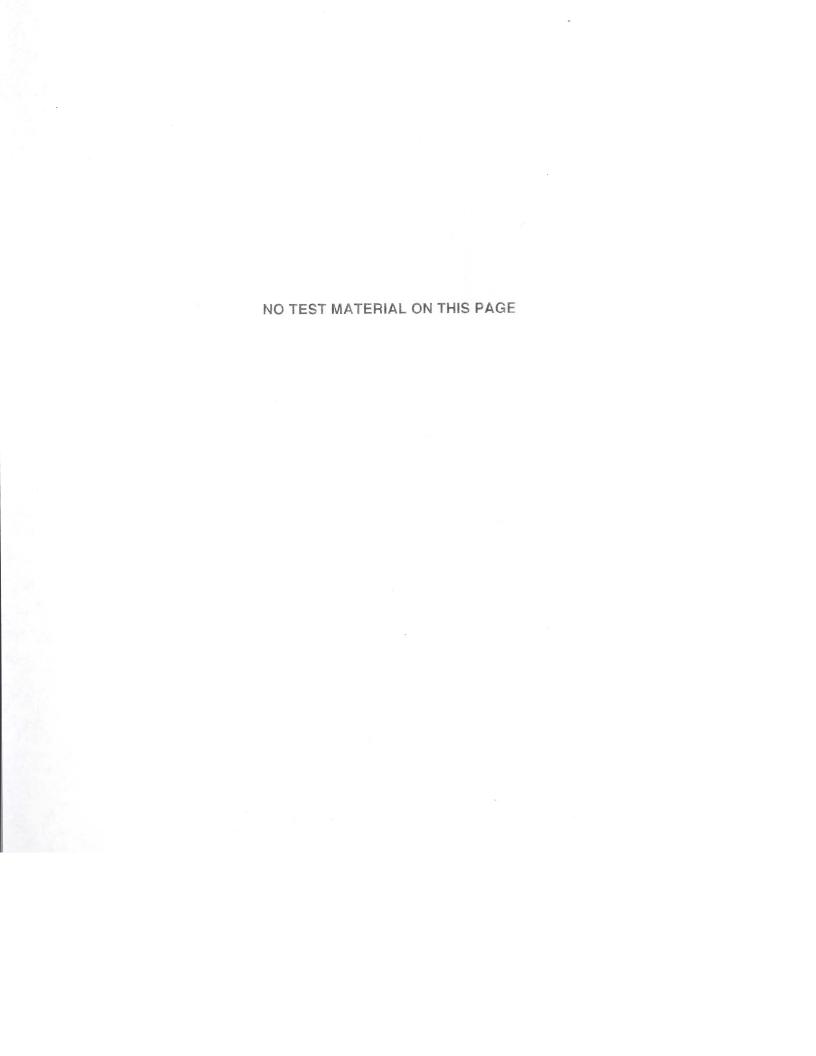

Trial	Position of End Q (cm)	Measured Magnetic Field (T) (directed from <i>P</i> to <i>Q</i>)	n (turns/m)
1	40	9.70×10^{-4}	
2	50	7.70×10^{-4}	
3	60	6.80×10^{-4}	
4	80	4.90×10^{-4}	
5	100	4.00×10^{-4}	

(a) Complete the last column of the table above by calculating the number of turns per meter.

^{*} A Hall Probe is a device used to measure the magnetic field at a point.

EEEEEEEEEEEEEE

(b) On the axes below, plot the measured magnetic field B versus n. Draw a best-fit straight line for the data points.



- (c) From the graph, obtain the value of μ_0 , the magnetic permeability of vacuum.
- (d) Using the theoretical value of $\mu_0 = 4\pi \times 10^{-7} \ (\text{T-m})/\text{A}$, determine the percent error in the experimental value of μ_0 computed in part (c).

STOP

END OF SECTION II, ELECTRICITY AND MAGNETISM

IF YOU FINISH BEFORE TIME IS CALLED, YOU MAY CHECK YOUR WORK ON SECTION II, ELECTRICITY AND MAGNETISM, ONLY. DO NOT TURN TO ANY OTHER TEST MATERIALS.

